首页> 美国卫生研究院文献>Computational and Mathematical Methods in Medicine >Undersampled MR Image Reconstruction with Data-Driven Tight Frame
【2h】

Undersampled MR Image Reconstruction with Data-Driven Tight Frame

机译:数据驱动紧框架的欠采样MR图像重建

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Undersampled magnetic resonance image reconstruction employing sparsity regularization has fascinated many researchers in recent years under the support of compressed sensing theory. Nevertheless, most existing sparsity-regularized reconstruction methods either lack adaptability to capture the structure information or suffer from high computational load. With the aim of further improving image reconstruction accuracy without introducing too much computation, this paper proposes a data-driven tight frame magnetic image reconstruction (DDTF-MRI) method. By taking advantage of the efficiency and effectiveness of data-driven tight frame, DDTF-MRI trains an adaptive tight frame to sparsify the to-be-reconstructed MR image. Furthermore, a two-level Bregman iteration algorithm has been developed to solve the proposed model. The proposed method has been compared to two state-of-the-art methods on four datasets and encouraging performances have been achieved by DDTF-MRI.
机译:在压缩感测理论的支持下,利用稀疏正则化的欠采样磁共振图像重建吸引了许多研究人员。然而,大多数现有的稀疏规范化的重建方法要么缺乏捕获结构信息的适应性,要么遭受高计算量的困扰。为了在不引入过多计算的情况下进一步提高图像重建精度,本文提出了一种数据驱动的紧帧磁图像重建(DDTF-MRI)方法。通过利用数据驱动紧框架的效率和有效性,DDTF-MRI训练自适应紧框架以稀疏待重建的MR图像。此外,已经开发了两级Bregman迭代算法来求解所提出的模型。拟议的方法已与四个数据集上的两个最新方法进行了比较,并且通过DDTF-MRI获得了令人鼓舞的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号