【2h】

Rasch Mixture Models for DIF Detection

机译:用于DIF检测的Rasch混合物模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rasch mixture models can be a useful tool when checking the assumption of measurement invariance for a single Rasch model. They provide advantages compared to manifest differential item functioning (DIF) tests when the DIF groups are only weakly correlated with the manifest covariates available. Unlike in single Rasch models, estimation of Rasch mixture models is sensitive to the specification of the ability distribution even when the conditional maximum likelihood approach is used. It is demonstrated in a simulation study how differences in ability can influence the latent classes of a Rasch mixture model. If the aim is only DIF detection, it is not of interest to uncover such ability differences as one is only interested in a latent group structure regarding the item difficulties. To avoid any confounding effect of ability differences (or impact), a new score distribution for the Rasch mixture model is introduced here. It ensures the estimation of the Rasch mixture model to be independent of the ability distribution and thus restricts the mixture to be sensitive to latent structure in the item difficulties only. Its usefulness is demonstrated in a simulation study, and its application is illustrated in a study of verbal aggression.
机译:当检查单个Rasch模型的测量不变性假设时,Rasch混合模型可能是有用的工具。当DIF组仅与可用的清单协变量弱相关时,与清单差异项功能(DIF)测试相比,它们具有优势。与在单个Rasch模型中不同,即使使用条件最大似然方法,Rasch混合模型的估计对能力分布的规范也很敏感。在仿真研究中证明了能力差异如何影响Rasch混合模型的潜在类别。如果目标仅是DIF检测,则不希望发现这种能力差异,因为一个人仅对与项目困难有关的潜在群体结构感兴趣。为了避免能力差异(或影响)的任何混杂影响,此处引入Rasch混合模型的新分数分布。它确保Rasch混合模型的估计独立于能力分布,因此仅在项目困难时才将混合物限制为对潜在结构敏感。在模拟研究中证明了其有用性,在言语攻击性研究中阐明了其应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号