首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Role of the site of synaptic competition and the balance of learning forces for Hebbian encoding of probabilistic Markov sequences
【2h】

Role of the site of synaptic competition and the balance of learning forces for Hebbian encoding of probabilistic Markov sequences

机译:突触竞争位点的作用和学习力平衡对概率马尔可夫序列的希伯来语编码的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The majority of distinct sensory and motor events occur as temporally ordered sequences with rich probabilistic structure. Sequences can be characterized by the probability of transitioning from the current state to upcoming states (forward probability), as well as the probability of having transitioned to the current state from previous states (backward probability). Despite the prevalence of probabilistic sequencing of both sensory and motor events, the Hebbian mechanisms that mold synapses to reflect the statistics of experienced probabilistic sequences are not well understood. Here, we show through analytic calculations and numerical simulations that Hebbian plasticity (correlation, covariance, and STDP) with pre-synaptic competition can develop synaptic weights equal to the conditional forward transition probabilities present in the input sequence. In contrast, post-synaptic competition can develop synaptic weights proportional to the conditional backward probabilities of the same input sequence. We demonstrate that to stably reflect the conditional probability of a neuron's inputs and outputs, local Hebbian plasticity requires balance between competitive learning forces that promote synaptic differentiation and homogenizing learning forces that promote synaptic stabilization. The balance between these forces dictates a prior over the distribution of learned synaptic weights, strongly influencing both the rate at which structure emerges and the entropy of the final distribution of synaptic weights. Together, these results demonstrate a simple correspondence between the biophysical organization of neurons, the site of synaptic competition, and the temporal flow of information encoded in synaptic weights by Hebbian plasticity while highlighting the utility of balancing learning forces to accurately encode probability distributions, and prior expectations over such probability distributions.
机译:大多数明显的感觉和运动事件以具有丰富概率结构的时间顺序序列发生。序列可以通过从当前状态转换到即将发生的状态的概率(前向概率),以及从先前状态转换到当前状态的概率(后向概率)来表征。尽管感觉和运动事件的概率排序普遍存在,但是塑造突触以反映经验概率序列的统计数据的希伯来机制尚未得到很好的理解。在这里,我们通过分析计算和数值模拟表明,具有突触前竞争的Hebbian可塑性(相关性,协方差和STDP)可以产生与输入序列中存在的条件性正向过渡概率相等的突触权重。相反,突触后竞争可以产生与相同输入序列的条件后向概率成比例的突触权重。我们证明了,为了稳定地反映神经元输入和输出的条件概率,局部的Hebbian可塑性要求在促进突触分化的竞争性学习力与促进突触稳定的均质化学习力之间取得平衡。这些力之间的平衡决定了先于学习的突触权重分布的先验,强烈影响结构出现的速率和最终突触权重分布的熵。在一起,这些结果表明神经元的生物物理组织,突触竞争的站点和由Hebbian可塑性在突触权重中编码的信息的时间流之间的简单对应关系,同时着重说明了平衡学习力来精确编码概率分布的效用,以及对这种概率分布的期望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号