首页> 美国卫生研究院文献>Frontiers in Human Neuroscience >Changes in Electroencephalography Complexity using a Brain Computer Interface-Motor Observation Training in Chronic Stroke Patients: A Fuzzy Approximate Entropy Analysis
【2h】

Changes in Electroencephalography Complexity using a Brain Computer Interface-Motor Observation Training in Chronic Stroke Patients: A Fuzzy Approximate Entropy Analysis

机译:使用脑计算机接口运动观察训练对慢性卒中患者脑电图复杂性的变化:模糊近似熵分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Entropy-based algorithms have been suggested as robust estimators of electroencephalography (EEG) predictability or regularity. This study aimed to examine possible disturbances in EEG complexity as a means to elucidate the pathophysiological mechanisms in chronic stroke, before and after a brain computer interface (BCI)-motor observation intervention. Eleven chronic stroke subjects and nine unimpaired subjects were recruited to examine the differences in their EEG complexity. The BCI-motor observation intervention was designed to promote functional recovery of the hand in stroke subjects. Fuzzy approximate entropy (fApEn), a novel entropy-based algorithm designed to evaluate complexity in physiological systems, was applied to assess the EEG signals acquired from unimpaired subjects and stroke subjects, both before and after training. The results showed that stroke subjects had significantly lower EEG fApEn than unimpaired subjects (p < 0.05) in the motor cortex area of the brain (C3, C4, FC3, FC4, CP3, and CP4) in both hemispheres before training. After training, motor function of the paretic upper limb, assessed by the Fugl-Meyer Assessment-Upper Limb (FMA-UL), Action Research Arm Test (ARAT), and Wolf Motor Function Test (WMFT) improved significantly (p < 0.05). Furthermore, the EEG fApEn in stroke subjects increased considerably in the central area of the contralesional hemisphere after training (p < 0.05). A significant correlation was noted between clinical scales (FMA-UL, ARAT, and WMFT) and EEG fApEn in C3/C4 in the contralesional hemisphere (p < 0.05). This finding suggests that the increase in EEG fApEn could be an estimator of the variance in upper limb motor function improvement. In summary, fApEn can be used to identify abnormal EEG complexity in chronic stroke, when used with BCI-motor observation training. Moreover, these findings based on the fApEn of EEG signals also expand the existing interpretation of training-induced functional improvement in stroke subjects. The entropy-based analysis might serve as a novel approach to understanding the abnormal cortical dynamics of stroke and the neurological changes induced by rehabilitation training.
机译:已经提出了基于熵的算法作为脑电图(EEG)可预测性或规律性的可靠估计器。这项研究旨在检查脑电接口复杂性的可能障碍,作为阐明慢性中风在脑计算机接口(BCI)-运动观察干预之前和之后的病理生理机制的手段。招募了11名慢性中风受试者和9名无障碍受试者,以检查其脑电图复杂性的差异。 BCI运动观察干预旨在促进中风受试者手的功能恢复。模糊近似熵(fApEn)是一种新颖的基于熵的算法,旨在评估生理系统的复杂性,该算法被用于评估在训练前后从未受损受试者和中风受试者获得的脑电信号。结果表明,在训练前,在两个半球的大脑运动皮层区域(C3,C4,FC3,FC4,CP3和CP4),中风受试者的EEG fApEn显着低于未受损受试者(p <0.05)。训练后,经Fugl-Meyer上肢评估(FMA-UL),动作研究手臂测试(ARAT)和狼运动功能测试(WMFT)评估的上腹部运动功能明显改善(p <0.05) 。此外,训练后在对侧半球中心区域中风受试者的脑电图fApEn显着增加(p <0.05)。对侧半球C3 / C4中的临床量表(FMA-UL,ARAT和WMFT)与EEG fApEn之间存在显着相关性(p <0.05)。这一发现表明,EEG fApEn的增加可能是上肢运动功能改善方差的估计值。总之,当与BCI运动观察训练一起使用时,fApEn可用于识别慢性中风的异常脑电图复杂性。此外,基于脑电信号的fApEn的这些发现也扩大了中风受试者训练引起的功能改善的现有解释。基于熵的分析可能是了解中风异常皮层动力学和康复训练所致神经系统变化的一种新颖方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号