首页> 美国卫生研究院文献>Frontiers in Neuroscience >A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses
【2h】

A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses

机译:可重构的在线学习尖峰神经形态处理器包括256个神经元和128K突触

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.
机译:实施具有实时在线学习能力的紧凑型,低功耗人工神经处理系统仍然是一个挑战。在本文中,我们提出了一种具有神经形态学习电路的全定制混合信号VLSI器件,该器件可模拟真实尖峰神经元和动态突触的生物物理学,以探索计算神经科学模型的特性并构建受脑启发的计算系统。所提出的体系结构允许片上配置各种网络连接,包括短期和长期可塑性的循环和深度网络。该设备包括128 K模拟突触和256个神经元回路,具有生物学上合理的动力学和基于双稳态尖峰的可塑性机制,从而赋予其在线学习能力。除模拟电路外,该设备还包括异步数字逻辑电路,用于设置不同的突触和神经元属性以及不同的网络配置。该原型设备使用180 nm 1P6M CMOS工艺制造,占地51.4 mm 2 ,典型实验(例如涉及吸引网络)的功耗约为4 mW。在这里,我们描述了整体架构和各个电路的细节,并展示了展示其潜力的实验结果。通过支持各种包含可塑性机制的皮质样计算模块,该设备将使具有在线学习功能的智能自主系统得以实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号