首页> 外文期刊>IEEE transactions on biomedical circuits and systems >A 0.086-mm$^2$ 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-nm CMOS
【24h】

A 0.086-mm$^2$ 12.7-pJ/SOP 64k-Synapse 256-Neuron Online-Learning Digital Spiking Neuromorphic Processor in 28-nm CMOS

机译:0.086毫米 $ ^ 2 $ 12.7-pJ / SOP 64k-Synapse 256-Neuron Online-学习28纳米CMOS中的数字尖峰神经形态处理器

获取原文
获取原文并翻译 | 示例
           

摘要

Shifting computing architectures from von Neumann to event-based spiking neural networks (SNNs) uncovers new opportunities for low-power processing of sensory data in applications such as vision or sensorimotor control. Exploring roads toward cognitive SNNs requires the design of compact, low-power and versatile experimentation platforms with the key requirement of online learning in order to adapt and learn new features in uncontrolled environments. However, embedding online learning in SNNs is currently hindered by high incurred complexity and area overheads. In this paper, we present ODIN, a 0.086-mm(2) 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm FDSOI CMOS achieving a minimum energy per synaptic operation (SOP) of 12.7 pJ. It leverages an efficient implementation of the spike-driven synaptic plasticity (SDSP) learning rule for high-density embedded online learning with only 0.68 mu m(2) per 4-bit synapse. Neurons can be independently configured as a standard leaky integrate-and-fire model or as a custom phenomenological model that emulates the 20 Izhikevich behaviors found in biological spiking neurons. Using a single presentation of 6k 16 x 16 MNIST training images to a single-layer fully-connected 10-neuron network with on-chip SDSP-based learning, ODIN achieves a classification accuracy of 84.5%, while consuming only 15 nJ/inference at 0.55 V using rank order coding. ODIN thus enables further developments toward cognitive neuromorphic devices for low-power, adaptive and low-cost processing.
机译:将计算架构从冯·诺依曼转变为基于事件的尖峰神经网络(SNN),为视觉或感觉运动控制等应用中的感觉数据低功耗处理带来了新的机遇。探索认知SNN的道路需要设计紧凑,低功耗和多功能的实验平台,并具有在线学习的关键要求,以便在不受控制的环境中适应和学习新功能。但是,目前将在线学习嵌入SNN受到了高额的复杂性和区域开销的阻碍。在本文中,我们介绍了ODIN,这是一种在28nm FDSOI CMOS中的0.086mm(2)64k突触256神经元在线学习数字加标神经形态处理器,每个突触操作(SOP)的最小能量为12.7 pJ。它利用峰值驱动的突触可塑性(SDSP)学习规则的有效实现,实现高密度嵌入式在线学习,每4位突触只有0.68μm(2)。神经元可以独立配置为标准的泄漏积分和发射模型,也可以作为定制的现象学模型,以模拟在生物峰值神经元中发现的20 Izhikevich行为。通过将单张6k 16 x 16 MNIST训练图像演示到具有基于SDSP的片上学习功能的单层完全连接的10神经元网络,ODIN可以实现84.5%的分类精度,而在此仅消耗15 nJ /推论使用等级编码编码为0.55V。因此,ODIN可以进一步发展为认知神经形态设备,以实现低功耗,自适应和低成本处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号