首页> 美国卫生研究院文献>Genetics >Empirical nonparametric bootstrap strategies in quantitative trait loci mapping: conditioning on the genetic model.
【2h】

Empirical nonparametric bootstrap strategies in quantitative trait loci mapping: conditioning on the genetic model.

机译:数量性状基因座作图中的经验非参数自举策略:基于遗传模型的条件。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several nonparametric bootstrap methods are tested to obtain better confidence intervals for the quantitative trait loci (QTL) positions, i.e., with minimal width and unbiased coverage probability. Two selective resampling schemes are proposed as a means of conditioning the bootstrap on the number of genetic factors in our model inferred from the original data. The selection is based on criteria related to the estimated number of genetic factors, and only the retained bootstrapped samples will contribute a value to the empirically estimated distribution of the QTL position estimate. These schemes are compared with a nonselective scheme across a range of simple configurations of one QTL on a one-chromosome genome. In particular, the effect of the chromosome length and the relative position of the QTL are examined for a given experimental power, which determines the confidence interval size. With the test protocol used, it appears that the selective resampling schemes are either unbiased or least biased when the QTL is situated near the middle of the chromosome. When the QTL is closer to one end, the likelihood curve of its position along the chromosome becomes truncated, and the nonselective scheme then performs better inasmuch as the percentage of estimated confidence intervals that actually contain the real QTL's position is closer to expectation. The nonselective method, however, produces larger confidence intervals. Hence, we advocate use of the selective methods, regardless of the QTL position along the chromosome (to reduce confidence interval sizes), but we leave the problem open as to how the method should be altered to take into account the bias of the original estimate of the QTL's position.
机译:测试了几种非参数自举方法,以获取定量特征位点(QTL)位置的更好置信区间,即以最小的宽度和无偏的覆盖概率。提出了两种选择性的重采样方案,以作为根据原始数据推断出的我们模型中遗传因素数量对引导程序进行调节的一种方法。该选择基于与遗传因素的估计数目相关的标准,并且只有保留的自举样本将为QTL位置估计的经验估计分布提供一个值。在一个染色体基因组上的一个QTL的一系列简单配置中,将这些方案与非选择性方案进行了比较。特别是,对于给定的实验能力,检查了染色体长度和QTL相对位置的影响,这确定了置信区间的大小。使用所使用的测试协议,当QTL位于染色体中间附近时,选择性重采样方案似乎是无偏的或无偏的。当QTL接近一端时,其在染色体上的位置的似然曲线将被截断,并且非选择性方案的效果会更好,因为实际包含实际QTL位置的估计置信区间的百分比更接近预期。但是,非选择性方法会产生较大的置信区间。因此,我们提倡使用选择方法,而与QTL在染色体上的位置无关(以减少置信区间大小),但对于应如何更改方法以考虑原始估计的偏差,我们仍然存在问题QTL的位置。

著录项

  • 期刊名称 Genetics
  • 作者

    C M Lebreton; P M Visscher;

  • 作者单位
  • 年(卷),期 1998(148),1
  • 年度 1998
  • 页码 525–535
  • 总页数 11
  • 原文格式 PDF
  • 正文语种
  • 中图分类 遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号