Fragile X syndrome (FXS) is the first cause of inherited intellectual disability, due to the silencing of the X-linked Fragile X Mental Retardation 1 gene encoding the RNA-binding protein FMRP. While extensive studies have focused on the cellular and molecular basis of FXS, neither human Fragile X patients nor the mouse model of FXS—the Fmr1-null mouse—have been profiled systematically at the metabolic and neurochemical level to provide a complementary perspective on the current, yet scattered, knowledge of FXS. Using proton high-resolution magic angle spinning nuclear magnetic resonance (1H HR-MAS NMR)-based metabolic profiling, we have identified a metabolic signature and biomarkers associated with FXS in various brain regions of Fmr1-deficient mice. Our study highlights for the first time that Fmr1 gene inactivation has profound, albeit coordinated consequences in brain metabolism leading to alterations in: (1) neurotransmitter levels, (2) osmoregulation, (3) energy metabolism, and (4) oxidative stress response. To functionally connect Fmr1-deficiency to its metabolic biomarkers, we derived a functional interaction network based on the existing knowledge (literature and databases) and show that the FXS metabolic response is initiated by distinct mRNA targets and proteins interacting with FMRP, and then relayed by numerous regulatory proteins. This novel “integrated metabolome and interactome mapping” (iMIM) approach advantageously unifies novel metabolic findings with previously unrelated knowledge and highlights the contribution of novel cellular pathways to the pathophysiology of FXS. These metabolomic and integrative systems biology strategies will contribute to the development of potential drug targets and novel therapeutic interventions, which will eventually benefit FXS patients.
展开▼
机译:脆性X综合征(FXS)是遗传性智力残疾的首个原因,这是由于X连锁的脆性X精神发育迟滞1基因编码RNA结合蛋白FMRP的沉默所致。尽管广泛的研究集中在FXS的细胞和分子基础上,但尚未在代谢和神经化学水平上对人的脆弱X病患者和FXS的小鼠模型(Fmr1基因缺失的小鼠)进行系统地分析,以提供有关当前研究的补充观点。 ,但尚未了解FXS。使用基于质子高分辨率魔角旋转核磁共振( 1 sup> H HR-MAS NMR)的代谢谱分析,我们在Fmr1缺陷的各个脑区中鉴定了与FXS相关的代谢特征和生物标记老鼠。我们的研究首次凸显了Fmr1基因失活具有深远的影响,尽管在脑代谢中具有协同作用,导致以下方面的改变:(1)神经递质水平,(2)渗透调节,(3)能量代谢和(4)氧化应激反应。为了功能上连接Fmr1缺乏症与其代谢生物标记,我们基于现有知识(文献和数据库)得出了一个功能相互作用网络,并表明FXS代谢反应是由不同的mRNA靶标和与FMRP相互作用的蛋白质引发的,然后通过许多调节蛋白。这种新颖的“综合代谢组和相互作用组作图”(iMIM)方法有利地将新颖的代谢发现与以前不相关的知识统一起来,并突出了新颖的细胞途径对FXS病理生理的贡献。这些代谢组学和整合系统生物学策略将有助于开发潜在的药物靶标和新颖的治疗手段,最终使FXS患者受益。
展开▼