首页> 美国卫生研究院文献>Genome Research >Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data
【2h】

Subsystem Identification Through Dimensionality Reduction of Large-Scale Gene Expression Data

机译:通过大规模降维识别子系统 基因表达数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The availability of parallel, high-throughput biological experiments that simultaneously monitor thousands of cellular observables provides an opportunity for investigating cellular behavior in a highly quantitative manner at multiple levels of resolution. One challenge to more fully exploit new experimental advances is the need to develop algorithms to provide an analysis at each of the relevant levels of detail. Here, the data analysis method non-negative matrix factorization (NMF) has been applied to the analysis of gene array experiments. Whereas current algorithms identify relationships on the basis of large-scale similarity between expression patterns, NMF is a recently developed machine learning technique capable of recognizing similarity between subportions of the data corresponding to localized features in expression space. A large data set consisting of 300 genome-wide expression measurements of yeast was used as sample data to illustrate the performance of the new approach. Local features detected are shown to map well to functional cellular subsystems. Functional relationships predicted by the new analysis are compared with those predicted using standard approaches; validation using bioinformatic databases suggests predictions using the new approach may be up to twice as accurate as some conventional approaches.
机译:同时监测数千个细胞可观察物的平行,高通量生物学实验的可用性为以高定量方式在多个分辨率水平下研究细胞行为提供了机会。更充分地利用新的实验进展的一个挑战是需要开发算法以在每个相关详细级别上提供分析。在这里,数据分析方法非负矩阵分解(NMF)已应用于基因阵列实验的分析。当前的算法基于表达模式之间的大规模相似性来识别关系,而NMF是最近开发的一种机器学习技术,能够识别与表达空间中局部特征相对应的数据子部分之间的相似性。包含300个酵母全基因组表达量的大型数据集用作示例数据,以说明新方法的性能。显示检测到的局部特征可以很好地映射到功能性蜂窝子系统。将新分析预测的功能关系与使用标准方法预测的功能关系进行比较;使用生物信息数据库进行的验证表明了预测 使用新方法的准确性可能是某些常规方法的两倍 方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号