首页> 美国卫生研究院文献>International Journal of Environmental Research and Public Health >Study on Urban Heat Island Intensity Level Identification Based on an Improved Restricted Boltzmann Machine
【2h】

Study on Urban Heat Island Intensity Level Identification Based on an Improved Restricted Boltzmann Machine

机译:基于改进约束玻尔兹曼机的城市热岛强度水平识别研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Thermal infrared remote sensing has become one of the main technology methods used for urban heat island research. When applying urban land surface temperature inversion of the thermal infrared band, problems with intensity level division arise because the method is subjective. However, this method is one of the few that performs heat island intensity level identification. This paper will build an intensity level identifier for an urban heat island, by using weak supervision and thought-based learning in an improved, restricted Boltzmann machine (RBM) model. The identifier automatically initializes the annotation and optimizes the model parameters sequentially until the target identifier is completed. The algorithm needs very little information about the weak labeling of the target training sample and generates an urban heat island intensity spatial distribution map. This study can provide reliable decision-making support for urban ecological planning and effective protection of urban ecological security. The experimental results showed the following: (1) The heat island effect in Wuhan is existent and intense. Heat island areas are widely distributed. The largest heat island area is in Wuhan, followed by the sub-green island. The total area encompassed by heat island and strong island levels accounts for 54.16% of the land in Wuhan. (2) Partially based on improved RBM identification, this method meets the research demands of determining the spatial distribution characteristics of the internal heat island effect; its identification accuracy is superior to that of comparable methods.
机译:热红外遥感已经成为城市热岛研究的主要技术手段之一。当应用热红外波段的城市地表温度反演时,由于该方法是主观的,因此会出现强度级划分的问题。但是,此方法是执行热岛强度级别识别的少数方法之一。本文将在改进的受限玻尔兹曼机(RBM)模型中使用弱监督和基于思想的学习方法,为城市热岛建立强度等级标识符。标识符会自动初始化注释并顺序优化模型参数,直到完成目标标识符。该算法几乎不需要有关目标训练样本的弱标记的信息,并生成城市热岛强度空间分布图。该研究可为城市生态规划提供可靠的决策支持,并有效保护城市生态安全。实验结果表明:(1)武汉市的热岛效应存在且强烈。热岛地区分布广泛。最大的热岛地区在武汉,其次是绿色岛。由热岛和强岛构成的总面积占武汉市土地的54.16%。 (2)部分基于改进的RBM识别,满足确定内部热岛效应的空间分布特征的研究需求;其识别精度优于同类方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号