首页> 美国卫生研究院文献>Comparative and Functional Genomics >Steady-State Analysis of Genetic Regulatory Networks Modelled byProbabilistic Boolean Networks
【2h】

Steady-State Analysis of Genetic Regulatory Networks Modelled byProbabilistic Boolean Networks

机译:遗传调控网络的稳态分析。概率布尔网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes.
机译:概率布尔网络(PBN)最近已作为一种有前途的遗传调控网络模型引入。 PBN的动态行为可以在马尔可夫链的背景下进行分析。一个关键目标是通过分析相应的马尔可夫链来确定PBN的稳态(长期)行为。这使得人们可以计算一个基因对另一个基因的长期影响,或者确定几个选定基因的长期联合概率行为。由于基于矩阵的方法很快就无法用于大型网络,因此我们建议使用蒙特卡洛方法。但是,收敛到平稳分布的速率成为中心问题。我们讨论了几种方法,用于确定实现与PBN对应的马尔可夫链收敛所需的迭代次数。使用最近引入的基于二态马尔可夫链理论的方法,我们说明了从人类神经胶质瘤基因表达数据设计的子网络上的方法,并确定了几组基因的联合稳态概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号