首页> 美国卫生研究院文献>Cambridge Open Access >Machine learning statistical learning and the future of biological research in psychiatry
【2h】

Machine learning statistical learning and the future of biological research in psychiatry

机译:机器学习统计学习和精神病学生物学研究的未来

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Psychiatric research has entered the age of ‘Big Data’. Datasets now routinely involve thousands of heterogeneous variables, including clinical, neuroimaging, genomic, proteomic, transcriptomic and other ‘omic’ measures. The analysis of these datasets is challenging, especially when the number of measurements exceeds the number of individuals, and may be further complicated by missing data for some subjects and variables that are highly correlated. Statistical learning-based models are a natural extension of classical statistical approaches but provide more effective methods to analyse very large datasets. In addition, the predictive capability of such models promises to be useful in developing decision support systems. That is, methods that can be introduced to clinical settings and guide, for example, diagnosis classification or personalized treatment. In this review, we aim to outline the potential benefits of statistical learning methods in clinical research. We first introduce the concept of Big Data in different environments. We then describe how modern statistical learning models can be used in practice on Big Datasets to extract relevant information. Finally, we discuss the strengths of using statistical learning in psychiatric studies, from both research and practical clinical points of view.
机译:精神病学研究已经进入“大数据”时代。现在,数据集通常涉及成千上万种异构变量,包括临床,神经影像学,基因组,蛋白质组学,转录组学和其他“组学”指标。这些数据集的分析具有挑战性,尤其是在测量数量超过个人数量的情况下,并且可能由于缺少某些主题和高度相关的变量的数据而变得更加复杂。基于统计学习的模型是经典统计方法的自然扩展,但提供了分析大型数据集的更有效方法。此外,这种模型的预测能力有望在开发决策支持系统中发挥作用。即,可以引入临床环境并指导诊断,分类或个性化治疗的方法。在这篇综述中,我们旨在概述统计学习方法在临床研究中的潜在好处。我们首先介绍不同环境中的大数据概念。然后,我们描述如何在实践中将现代统计学习模型用于大数据集以提取相关信息。最后,我们从研究和实际临床角度讨论了在精神病学研究中使用统计学习的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号