首页> 美国卫生研究院文献>Biophysical Journal >Role of Protein Cavities on Unfolding Volume Change and on Internal Dynamics under Pressure
【2h】

Role of Protein Cavities on Unfolding Volume Change and on Internal Dynamics under Pressure

机译:蛋白质空腔在压力下展开体积变化和内部动力学上的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The effects of two single point cavity forming mutations, F110S and I7S, on the unfolding volume change (ΔV0) of azurin from Pseudomonas aeruginosa and on the internal dynamics of the protein fold under pressure were probed by the fluorescence and phosphorescence emission of Trp-48, deeply buried in the compact hydrophobic core of the macromolecule. Pressure-induced unfolding, monitored by the shift of the center of mass of the fluorescence spectrum, showed that ΔV0 is in the range of 60–70 mL/mol, not significantly different between cavity mutants and compact azurin species such as the wild-type and the mutant C3A/C26A, in which the superficial disulphide has been removed. The lack of extra volume in F110S and I7S proves that the engineered cavities, 40 Å3 in I7S and 100 Å3 in F110S, are filled with water molecules. Changes in flexibility of the protein matrix around the chromophore were monitored by the intrinsic phosphorescence lifetime (τ0). The application of pressure in the predenaturation range initially decreases the internal flexibility of azurin, the trend eventually reverting on approaching unfolding. The main difference between compact folds, wild-type and C3A/C26A, and cavity mutants is that the inversion point is powered from ∼3 kbar to 1.5 kbar for F110S and <0.1 kbar for I7S, meaning that in the latter species pressure-induced internal hydration dominates very early over any compaction of the globular fold resulting from the reduction of internal free volume. The similar response between wild-type and the significantly less-stable C3A/C26A mutant suggests that thermodynamic stability per se is not the dominant factor regulating pressure-induced internal hydration of proteins.
机译:探究了两个单点腔形成突变F110S和I7S对铜绿假单胞菌zu素的展开体积变化(ΔV 0 )和压力下蛋白质折叠内部动力学的影响。 Trp-48的荧光和磷光发射,深埋在大分子的紧密疏水核中。压力诱导的展开,通过荧光光谱质心的移动进行监测,显示ΔV 0 的范围为60-70 mL / mol,在腔突变体和紧凑型之间没有显着差异azurin物种,例如野生型和突变型C3A / C26A,其中已去除了表面二硫化物。 F110S和I7S缺少多余的体积,这证明了I7S中的40Å 3 和F110S中的100Å 3 的工程腔充满了水分子。通过固有的磷光寿命(τ0)监测发色团周围蛋白质基质的柔韧性变化。在预变性范围内施加压力最初会降低天青蛋白的内部柔韧性,这种趋势最终随着接近展开而恢复。紧凑褶皱,野生型和C3A / C26A以及腔突变体之间的主要区别在于,F110S的反转点功率从约3 kbar升至1.5 kbar,I7S的反转点功率从〜0.1 kbar,这意味着在后一种物种中,压力诱导由于内部自由体积的减少,内部水化作用在球形褶皱的任何压实作用中都占主导地位。野生型和明显不稳定的C3A / C26A突变体之间的相似响应表明,热力学稳定性本身并不是调节压力诱导的蛋白质内部水化的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号