首页> 外文学位 >Unfolding proteins by force: Insights from quasi-equilibrium molecular dynamics calculations.
【24h】

Unfolding proteins by force: Insights from quasi-equilibrium molecular dynamics calculations.

机译:用力展开蛋白质:准平衡分子动力学计算的见解。

获取原文
获取原文并翻译 | 示例

摘要

We have studied the unfolding by force of an immunoglobulin domain (I27) of the muscle protein titin and of a single ubiquitin molecule using molecular dynamics simulations at 300 K. Previous studies done on I27 at constant pulling rates, showed that the first significant effect of the force is to pull apart two beta-strands connected to each other by six backbone H-bonds. No details about the mechanism of H-bond breaking were provided. Our simulation protocol, "pull and wait", is designed to correspond to very slow pulling, more similar to the rates of pulling used in experiments than the protocols used in previous computational studies. Under these conditions interstrand backbone H-bonds are not "ripped apart" by the application of the force. Instead, for certain backbone H-bonds, the small elongations produced by the force weaken them with respect to water-backbone H-bonds. These weakened bonds allow a single water molecule to make H-bonds to the CO and the NH of the same backbone H-bond while they are still bound to each other. The backbone H-bond then breaks (distance > 3.6 A), while its donor and acceptor atoms remain bound to the same water molecule. Further separation of the chains takes place when a second water molecule makes an H-bond with either the protein backbone donor or acceptor atom. Thus, the force does not directly break the main chain H-bonds, it destabilizes them in such a way that they are replaced by H-bonds to water. This mechanism suggests that the force necessary to break all the H-bonds and separate the two strands will be strongly dependent on the pulling speed. Further simulations carried out at low forces but at long times show that, given enough time, even a very small pulling force (<400 pN) is sufficient to destabilize the interstrand H-bonds and allow them to be replaced by H-bonds to two water molecules. As expected, increasing the temperature to 350 K allows the interstrand H-bonds to break at lower forces than those required at 300 K.
机译:我们已经在300 K下使用分子动力学模拟研究了肌肉蛋白titin的免疫球蛋白结构域(I27)和单个泛素分子的受力展开。先前以恒定拉动速率对I27进行的研究表明,I27的第一个显着作用是力是将通过六个骨架H键相互连接的两个β链分开。没有提供关于氢键断裂机理的细节。我们的模拟协议“拉动和等待”旨在对应于非常缓慢的拉动,与先前计算研究中使用的协议相比,更类似于实验中使用的拉动速率。在这些条件下,链间主链的氢键不会因施加力而“撕开”。取而代之的是,对于某些骨架H键,相对于水骨架H键,力产生的小伸长会削弱它们。这些弱化的键允许单个水分子与相同主链H键的CO和NH形成H键,而它们仍彼此结合。然后,主链氢键断裂(距离> 3.6 A),而其供体和受体原子仍与同一水分子结合。当第二个水分子与蛋白质主链供体或受体原子形成氢键时,进一步分离链。因此,该力不会直接破坏主链的氢键,反而会破坏主链的稳定性,以至于它们被氢键所取代。这种机制表明,断裂所有氢键并分开两条链所必需的力将强烈取决于牵引速度。在较小的力下但长时间进行的进一步模拟显示,只要有足够的时间,即使很小的拉力(<400 pN)也足以使链间氢键不稳定并使它们被氢键取代成两个水分子。不出所料,将温度提高到350 K可使链间H键在比300 K所需的力小的作用力下断裂。

著录项

  • 作者

    Pabon, German.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biophysics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 79 p.
  • 总页数 79
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号