首页> 美国卫生研究院文献>Biophysical Journal >Mechanism of Titin Unfolding by Force: Insight from Quasi-Equilibrium Molecular Dynamics Calculations
【2h】

Mechanism of Titin Unfolding by Force: Insight from Quasi-Equilibrium Molecular Dynamics Calculations

机译:力作用下的钛蛋白展开机理:准平衡分子动力学计算的启示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We have studied the unfolding by force of one of the immunoglobulin domains of the muscle protein titin using molecular dynamics simulations at 300 K. Previous studies, done at constant pulling rates, showed that under the effect of the force two strands connected to each other by six backbone H-bonds are pulled apart. No details about the mechanism of H-bond breaking were provided. Our simulation protocol “pull and wait” was designed to correspond to very slow pulling, more similar to the rates used in experiments than are the protocols used in previous computational studies. Under these conditions interstrand backbone H-bonds are not “ripped apart” by the application of the force. Instead, small elongations produced by the force weaken specific backbone H-bonds with respect to water-backbone H-bonds. These weakened bonds allow a single water molecule to make H-bonds to the CO and the NH of the same backbone H-bond while they are still bound to each other. The backbone H-bond then breaks (distance >3.6 Å), but its donor and acceptor atoms remain bound to the same water molecule. Further separation of the chains takes place when a second water molecule makes an H-bond with either the protein backbone donor or acceptor atom. Thus, the force does not directly break the main chain H-bonds: it destabilizes them in such a way that they are replaced by H-bonds to water. With this mechanism, the force necessary to break all the H-bonds required to separate the two strands will be strongly dependent on the pulling speed. Further simulations carried out at low forces but long waiting times (≥ 500 ps, ≤ 10 ns) show that, given enough time, even a very small pulling force (<400 pN) is sufficient to destabilize the interstrand H-bonds and allow them to be replaced by H-bonds to two water molecules. As expected, increasing the temperature to 350 K allows the interstrand H-bonds to break at lower forces than those required at 300 K.
机译:我们使用分子动力学模拟在300 K下研究了肌肉蛋白titin免疫球蛋白结构域之一的受力展开。以前的研究以恒定的拉速进行,显示在力的作用下,两条链通过六个主链氢键被拉开。没有提供关于氢键断裂机理的细节。我们的模拟协议“拉动和等待”被设计为对应于非常缓慢的拉动,与之前的计算研究中使用的协议相比,更类似于实验中使用的速率。在这些条件下,链间主链的氢键不会因施加力而“撕裂”。取而代之的是,由力产生的小伸长相对于水骨架H键削弱了特定的骨架H键。这些弱化的键允许单个水分子与相同主链H键的CO和NH形成H键,而它们仍彼此结合。然后,主链氢键断裂(距离> 3.6),但其供体和受体原子仍与同一水分子结合。当第二个水分子与蛋白质主链供体或受体原子形成氢键时,进一步分离链。因此,该力不会直接破坏主链的氢键:它会破坏氢键的稳定性,以至于它们被氢键所取代。通过这种机制,破坏将两条线分开所需的所有H键所需的力将在很大程度上取决于牵引速度。在较小的力但等待时间较长(≥500 ps,≤10 ns)下进行的进一步模拟表明,在足够的时间下,即使很小的拉力(<400 pN)也足以使链间氢键不稳定并允许它们被两个水分子的氢键取代。不出所料,将温度提高到350 K可使链间H键在比300 K所需的力小的作用力下断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号