...
首页> 外文期刊>Proteins: Structure, Function, and Genetics >Structure and folding of disulfide-rich miniproteins: insights from molecular dynamics simulations and MM-PBSA free energy calculations.
【24h】

Structure and folding of disulfide-rich miniproteins: insights from molecular dynamics simulations and MM-PBSA free energy calculations.

机译:富含二硫键的小蛋白的结构和折叠:分子动力学模拟和MM-PBSA自由能计算的见解。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The fold of small disulfide-rich proteins largely relies on two or more disulfide bridges that are main components of the hydrophobic core. Because of the small size of these proteins and their high cystine content, the cysteine connectivity has been difficult to ascertain in some cases, leading to uncertainties and debates in the literature. Here, we use molecular dynamics simulations and MM-PBSA free energy calculations to compare similar folds with different disulfide pairings in two disulfide-rich miniprotein families, namely the knottins and the short-chain scorpion toxins, for which the connectivity has been discussed. We first show that the MM-PBSA approach is able to discriminate the correct knotted topology of knottins from the laddered one. Interestingly, a comparison of the free energy components for kalata B1 and MCoTI-II suggests that cyclotides and squash inhibitors, although sharing the same scaffold, are stabilized through different interactions. Application to short-chain scorpion toxins suggests that the conventional cysteine pairing found in many homologous toxins is significantly more stable than the unconventional pairing reported for maurotoxin and for spinoxin. This would mean that native maurotoxin and spinoxin are not at the lowest free energy minimum and might result from kinetically rather than thermodynamically driven oxidative folding processes. For both knottins and toxins, the correct or conventional disulfide connectivities provide lower flexibilities and smaller deviations from the initial conformations. Overall, our work suggests that molecular dynamics simulations and the MM-PBSA approach to estimate free energies are useful tools to analyze and compare disulfide bridge connectivities in miniproteins.
机译:小的富含二硫键的蛋白质的折叠很大程度上依赖于两个或多个二硫键,它们是疏水核心的主要成分。由于这些蛋白质的体积小且它们的胱氨酸含量高,因此在某些情况下很难确定半胱氨酸的连通性,从而导致文献中的不确定性和争论。在这里,我们使用分子动力学模拟和MM-PBSA自由能计算来比较两个富含二硫键的小蛋白家族(即结蛋白和短链蝎毒素)中具有不同二硫键配对的相似折叠,并对其连接性进行了讨论。我们首先表明,MM-PBSA方法能够从梯形蛋白中区分出正确的打结蛋白拓扑结构。有趣的是,对卡拉塔B1和MCoTI-II的自由能成分的比较表明,尽管环共享化合物和南瓜抑制剂具有相同的支架,但它们通过不同的相互作用而稳定。在短链蝎毒素上的应用表明,在许多同源毒素中发现的常规半胱氨酸配对比针对莫罗毒素和刺胶毒素的非常规配对显着更稳定。这将意味着天然的山毛毒素和刺糖多孢菌素的最低自由能不是最低的,并且可能是由动力学而非热力学驱动的氧化折叠过程产生的。对于结蛋白和毒素,正确或常规的二硫键连接性都具有较低的柔韧性,并且与初始构象的偏差较小。总体而言,我们的工作表明,分子动力学模拟和MM-PBSA方法估算自由能是分析和比较小蛋白中二硫键连接性的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号