首页> 中文期刊> 《传感器与微系统》 >基于单类分类方法的道路高排放源识别算法

基于单类分类方法的道路高排放源识别算法

     

摘要

为了提高对道路高排放源的识别效率,降低其造成的大气污染,提出了一种基于随机傅里叶特征和非常稀疏映射的单类分类(OCC)宽度学习系统(BLS)的道路高排放源识别方法,即OCC-FS-BLS。首先,将道路高排放源数据进行非线性的随机傅里叶特征映射得到BLS的特征节点,再通过非常稀疏随机映射生成增强节点,拼接所有节点作为BLS输出层的输入;然后,通过岭回归求解改进BLS的输出权重;最后,根据OCC-BLS构建单类分类算法的策略,实现OCC-FS-BLS算法。实验结果表明:OC-FS-BLS在高排放源识别任务中相比OCC-BLS等其他模型表现出更好的识别性能。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号