首页> 中文期刊>光谱学与光谱分析 >Cr3+单掺杂及Eu3+/Cr3+共掺杂GdAlO3近红外长余辉发光纳米粒子的制备、微结构及光学特性

Cr3+单掺杂及Eu3+/Cr3+共掺杂GdAlO3近红外长余辉发光纳米粒子的制备、微结构及光学特性

     

摘要

同时可作为磁共振成像造影剂与近红外余辉光学成像光学探针双功能的纳米粒子,在生物医学领域具有重要的应用价值.采用自蔓延燃烧法制备了不同掺杂浓度的GdAlO3:x%Cr3+及GdAlO3:1%Cr3+,y%Eu3+近红外长余辉发光纳米粒子.并采用X射线衍射、扫描电子显微镜、激发和发射光谱及发光动力学分析等技术手段,较系统地研究了其微结构及光学特性.实验结果表明,Cr3+取代了GdAlO3中的Al3+的格位,单掺样品的平均粒子尺寸约为202 nm.GdAlO3:x%Cr3+样品的激发谱显示,激发峰来源于Cr3+和Gd3+的跃迁;在583 nm的激发下,在650~750 nm近红外范围内,出现四个近红外光发射峰.其中,725 nm处的发射峰归属为禁戒跃迁2 E到4 A2的零声子线,700和750 nm处的发射峰则为声子边带的发射.在0.2% ~2.0% 的掺杂浓度范围内,随着Cr3+掺杂浓度的增加,这些发射峰的强度先增强后减弱,最优浓度为1%.而位于735 nm处的发射峰强度随C r3+浓度增大而增大,其归属于C r3+-C r3+对的发光.同时,单掺样品可观察到位于725 nm的长余辉发光,其中GdAlO3:1%Cr3+纳米粒子的余辉时间最长,并超过30 s.在上述Cr3+最优浓度(1%)基础上,通过Eu3+取代GdAlO3基质中Gd3+的格位,实现了Eu3+/Cr3+共掺杂.实验发现,在266 nm激发下,在红光区域范围内可观察到以位于614 nm处的发射为主的一系列发射峰.尤其,由于存在Eu3+到Cr3+的能量传递,在近红外区出现了位于725 nm处Cr3+的近红外发射峰.当Eu3+浓度为13% 时,与Cr3+单掺杂样品相比,其样品的平均粒子尺寸虽然减小到167 nm,但在275 nm紫外光照射5 min停止后,发现共掺样品在位于725 nm处Cr3+的余辉发光强度明显增强.通过比较分析单掺和共掺样品的吸收和发射光谱及发光动力学的结果,验证了由于E u3+到C r3+的持续能量传递可引起较显著地近红外余辉发光增强的结论.同时,该研究为设计新型的近红外长余辉发光纳米材料提供了新的思路.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号