首页> 中文期刊> 《组合机床与自动化加工技术》 >基于改进Faster R-CNN的钢板表面缺陷检测

基于改进Faster R-CNN的钢板表面缺陷检测

     

摘要

针对钢板表面缺陷检测难的问题,使用改进的Faster R-CNN模型对两种带钢的8类表面缺陷进行检测。首先,对数据进行增强,获得钢板表面缺陷数据集;其次,使用VGG16、MobileNet-V2、ResNet-50三种不同特征提取网络在数据集上对模型进行训练、测试,对比模型精度,确定具体任务下的最优特征提取网络;然后,使用K-means算法对缺陷数据进行聚类分析,定制出更适合钢板表面缺陷的锚框方案;最后,融入特征金字塔网络,进一步提高模型性能。实验结果表明,改进后的模型对低对比度微小缺陷的检测能力有了明显的提高,mAP值达到98.44%比原始的Faster R-CNN模型提高了13.85%。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号