首页> 中文期刊> 《组合机床与自动化加工技术》 >基于混合时间序列卷积神经网络的轴承故障诊断

基于混合时间序列卷积神经网络的轴承故障诊断

     

摘要

在传统滚动轴承故障诊断中,绝大多数方法采用了从振动信号提取特征的诊断模式,但是这种模式必然会使原始信号降维进而导致故障信息的丢失。卷积神经网络(CNN)通过权重共享和稀疏连接直接对原始信号进行操作,实现自适应特征提取,最大化保留故障信息。受CNN原理启发,开发出了一种基于工业振动信号特征的新型诊断框架,称之为混合时间序列CNN(HTS-CNN)。首先,利用估计总体比例的方法自适应确定模型训练样本数目;其次,通过对时间序列片段进行随机组合的方式,使模型能够提取非相邻信号特征;最后,利用Softmax激活函数在模型输出端执行多分类任务。通过对凯斯西储大学及CUT-2平台轴承数据进行分析,实验结果表明:该方法能够准确、有效的对滚动轴承故障进行分类。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号