首页> 中文期刊> 《现代电子技术》 >一种基于自组织竞争网络的车辆识别方法

一种基于自组织竞争网络的车辆识别方法

     

摘要

为了对车辆目标进行识别,采用了一种基于自组织竞争网络的方法。该算法提取16个离散余弦变换描述子,6个独立的不变矩和3个区域描述子等25个平移、旋转、尺度放缩等变换下都不变的目标形状特征,把这些混合特征输入到设计的自组织竞争网络进行学习、聚类和分类,获得的分类精度高达96.15%,从而得出用自组织竞争网络进行混合特征识别,性能稳定,较单一特征提取识别精度更高。%A vehicle recognition method based on self-organizing competitive network is proposed. 16 DCT descriptors,6 independent invariant moments and 3 region characterizations are extracted to identify vehicle targets. These features are invariant under the conditions of translation,rotation,and scale change of targets. After these mixed features were input into the self-orga-nizing competitive network for learning,clustering and classification,96.15% classification accuracy was obtained. Compared with single-feature extraction method,the self-organizing competitive network based on the mixed features is faster and has higher recognition rate.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号