首页> 中文期刊> 《山西师范大学学报:自然科学版》 >一种改进的数据流聚类方法

一种改进的数据流聚类方法

     

摘要

针对传统K-均值方法不能有效处理动态变化的数据聚类的问题,本文提出了一种改进的数据流聚类技术——流式K-均值聚类(Streaming K-means Clustering,SKC).该方法首先对数据流中已经产生的初始数据块进行K-均值聚类,当数据流的新数据块到来时,通过衡量已经得到的聚类结果与新进入样本块的距离,对样本进行初步简单归类,并计算聚类结果的性能,若聚类结果性能在可接受范围内,则该数据块聚类结束,否则采用K-均值方法对新类进行深层次聚类.采用SKC的流式数据聚类方法处理数据流的聚类问题,对于整个数据流中的多数数据块都进行简单归类,只有少数数据块进行K-均值聚类,有效提高了数据流聚类的效率.实验结果表明,流式K-均值聚类方法能够有效处理数据流的聚类问题.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号