首页> 中文期刊> 《信息工程大学学报》 >PWFT-BERT:一种融合排序学习与预训练模型的检索排序方法

PWFT-BERT:一种融合排序学习与预训练模型的检索排序方法

     

摘要

信息检索是从文档集合或互联网中找出用户所需信息的过程,细化为召回和排序两个阶段。针对排序阶段中相关文档的重排序,提出一种称为融合排序学习与预训练模型的检索排序方法(Pair-Wise FineTuned Bidirectional Encoder Representation from Transformers,PWFTBERT)。通过对候选论文数据集使用BM25等算法召回出与查询相关的小范围文档后,可应用PWFT-BERT对召回得到的文档集合进行排序。为构造pair-wise形式的训练数据,提出一种伪负例生成算法生成训练数据,并使用排序学习方法微调预训练模型使其适配排序任务。对比IT-IDF和BM25基线方法,PWFT-BERT在WSDM-DiggSci 2020数据集上的检索结果提升了240%和74%,证明了所提方法的有效性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号