首页> 中文期刊> 《中国图象图形学报》 >基于修正PCNN的多传感器图像融合方法

基于修正PCNN的多传感器图像融合方法

     

摘要

多传感器图像融合技术作为信息融合的重要分支和研究热点,已广泛应用在机器视觉、医疗诊断、军事遥感等领域.为了更好地进行多传感器图像融合,将在图像分割、目标识别等领域具有独特优势的脉冲耦合神经网络(pulse coupled neural network,PCNN)引入到多传感器图像融合领域中来,提出了一种基于修正PCNN的多源图像融合方法,该方法在区域分割的基础上,先提取区域特征,然后由特征指导融合过程;同时,从目标区域相对于背景的显著性出发,提出了一种反映目标区域突出性的新特征,并针对传统PCNN参数无法自动设定的难题,提出了基于修正PCNN的参数自动设定方案.实验结果表明,该方法无论在主观视觉效果,还是客观评价参数上均优于基于多分辨分析的融合算法,且克服了传统像素级融合方法中融合图像模糊、对噪声敏感等不足,尤其适用于图像不能严格配准的应用场合.这对于拓宽PCNN的理论研究和实际应用具有一定价值.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号