首页> 中文期刊> 《计算机应用》 >基于变分自编码器的异常颈动脉早期识别和预测

基于变分自编码器的异常颈动脉早期识别和预测

     

摘要

颈动脉狭窄、颈动脉内中膜厚度增加(CIMT)或颈动脉斑块等可导致脑卒中的发生.为实现脑卒中大规模初步筛查,提出基于医疗数据的改进的变分自编码器(VAE)来识别和预测异常颈动脉.首先,针对医疗数据存在缺失的情况,采用K近邻(KNN)、均值和众数相混合的方法(MKNN)以及改进的VAE对缺失数据进行填补以得到完整的数据集,从而提高数据的应用范围;接着,分析特征属性,并依据重要性对特征进行排序;然后,运用逻辑回归(LR)、支持向量机(SVM)、随机森林(RF)和极限梯度提升树(XGBT)这四种有监督学习方法结合遗传算法(GA)来建立异常颈动脉识别模型;最后,基于改进的VAE建立预测异常颈动脉的半监督模型.相较于基线模型,基于改进的VAE的半监督模型性能提升明显,灵敏度达到0.8938,特异性达到0.9272,F1值达到0.9105,分类准确率达到0.9105.实验结果表明,所建立的半监督模型可以用来识别异常颈动脉,进而作为一种识别脑卒中高危人群的工具,预防和减少脑卒中的发生.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号