首页> 中文期刊> 《计算机应用》 >基于多步神经网络观测器的扑翼飞行器缓变故障检测

基于多步神经网络观测器的扑翼飞行器缓变故障检测

     

摘要

针对缓变故障初始变化幅值较小导致的基于传统神经网络观测器的故障检测算法检测效率较低的问题,提出一种基于多步神经网络观测器与自适应阈值的扑翼飞行器(FWMAV)缓变故障检测算法.首先,构建一个多步预测的观测器模型,利用多步观测器的延时性能避免观测器被故障数据污染;然后,依据FWMAV的实际飞行实验数据,对多步观测器窗口宽度进行实验和分析;其次,提出一种自适应阈值策略,通过残差卡方检测算法辅助进行观测器残差值的故障检测;最后,采用FWMAV的实际飞行实验数据进行算法的验证和分析.结果表明,与基于传统神经网络观测器的故障检测算法相比,所提算法在缓变故障检测速度方面提升了737.5%,在缓变故障检测准确率方面提升了96.1%.由此可见,所提算法能够有效提高FWMAV缓变故障的检测速度和检测准确率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号