首页> 中文期刊> 《计算机辅助设计与图形学学报》 >基于深度学习的三维点云修复技术综述

基于深度学习的三维点云修复技术综述

     

摘要

三维点云是最常用的三维场景/物体表示方法之一.根据点云修复侧重点不同,将基于深度学习的三维点云修复技术划分为密集重建、补全重建和去噪重建3类;详细分析了相关典型修复模型及关键技术,如特征编码、特征扩展和损失函数设计;总结了常用的网络模块、点云数据集和评估准则;最后讨论了3类修复技术之间的关系,并从旋转不变性特征提取、细节信息修复、拓扑关系保持、几何算法应用和多模态数据融合5个方面探讨了点云修复技术面临的挑战及未来发展趋势.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号