首页> 中文期刊> 《计算机辅助设计与图形学学报》 >木刻版画风格转换的深度学习算法

木刻版画风格转换的深度学习算法

     

摘要

为了使木刻版画风格转换结果呈现出更明显的木刻刻痕纹理,同时保持刻痕纹理分布的合理性,提出一种基于神经网络语义分割算法和神经风格转换的木刻版画风格转换算法,该算法按不同区域进行木刻版画的风格转换.首先,使用神经网络分割算法和Labelme图像标注工具分别对内容图像和木刻版画图像进行语义分割.然后将分割结果二值化,形成掩膜图像.将掩膜图像作为引导,与内容图像和木刻版画图像一起输入具有空间引导通道的神经风格转换网络进行分区域风格转换.在PyTorch深度学习框架下,使用该算法对大量人物和自然场景图片进行木刻版画风格转换,并与基于迭代优化、快速风格转换和任意风格转换3类神经风格转换算法中各自最具代表性算法的转换结果进行比较.结果表明,所提算法的木刻版画风格转换结果所呈现的木刻刻痕纹理明显,刻痕纹理分布合理,转换结果真实自然,更接近真实的木刻版画.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号