首页> 中文期刊>中南大学学报 >Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow

Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow

     

摘要

Single cell temperature difference of lithium-ion battery(LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics(CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号