首页> 中文期刊>中南大学学报 >Tuning microstructure and surface chemistry of reduced graphene oxide by mild reduction

Tuning microstructure and surface chemistry of reduced graphene oxide by mild reduction

     

摘要

Reduced graphene oxide(RGO) sheets with varied contents and types of oxygenated groups were synthesized by Hummers treatment of natural graphite powders followed by different nontoxic and mild reduction methods, which include thermal and chemical reduction with ethylene glycol, KOH and Fe powder. The changes in microstructure and surface chemistry of RGOs were extensively characterized by SEM, TEM, AFM, XRD, XPS and Raman spectrum. The results show that significant exfoliation occurs during oxidation and is retained in reduction processes, along with the formation of curled wavy morphology. Compared with large d spacing(0.852 nm) of graphene oxide(GO), the(002) plane distance decreases to 0.358-0.384 nm of RGOs, indicating efficient tuning of surface functionalities through mild reduction methods. The ID/IG ratio of RGOs is about 1.0-1.15, indicating that reconstructed sp^2 domains have smaller sizes and larger quantity. The content of sp^2 bonded C in GO(36.93%, molar fraction) increases to 45.48%-72.92%(molar fraction) in RGOs, along with a drastic decrease in hydroxyl and epoxy and minor changes in carbonyl and carboxyl. Thermal reduction or chemical reduction produces RGOs with residual functionalities, which may render different chemical activity and is desirable in various applications.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号