语境化音乐流派识别

     

摘要

音乐流派识别(music genre recognition,简称MGR)是一项应用前景广阔的研究领域,同时也能够为音乐机器学习技术提供一个良好的测试台.在过去几年中,涌现出了大量基于机器学习的MGR系统.然而,单纯依靠底层声学特征的MGR算法在分类时往往不能得到令人满意的结果.作者受到语境化机器学习技术的启发,提出了基于堆叠泛化的MGR分类系统.该系统通过提取互联网中用户标注音乐时使用的标签,同时融合声学特征完成语境化音乐流派识别.在论文中,MGR系统分为内容层和语境层,内容层由提取Mel倒谱系数(Mel frequency cepstrum coefficient,简称MFCC)和快速傅里叶变换(fast Fourier transformation,简称FFT)特征的声学特征表示,语境层由额外标签表示.在数据集GTZAN的实验结果表明,在数据集GTZAN下,语境化的MGR分类准确率远高于基于声学特征的MGR分类准确率,实现了20%的分类性能的提升.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号