首页> 中文期刊> 《智能计算机与应用》 >面向数据集覆盖问题的优化算法研究

面向数据集覆盖问题的优化算法研究

     

摘要

数据科学时代,基于某些数据集训练机器学习算法是常见的。通过调查或科学实验,可以前瞻性地收集到数据集。最近,已经认识到训练数据集只具有代表性是不够的,如果受训练的系统要很好地处理一些不太流行的类别,则必须包括来自这些类别的足够的例子,这便是数据集覆盖问题。本文在已有的处理数据集覆盖问题的方法的基础上,结合关联规则挖掘相关算法的思想,提出了获取MUP的优化算法,提高了获取MUP的运行效率;另外还提出了计算coverage算法面对数据稀疏问题以及位图过大、内存不足问题的解决思路,最后通过理论分析以及对实际数据集的综合实验,验证了获取MUP优化算法的优越性。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号