首页> 中文期刊> 《智能计算机与应用》 >基于加权随机森林算法的虚拟试衣型号推荐技术研究

基于加权随机森林算法的虚拟试衣型号推荐技术研究

     

摘要

随着体感交互技术的发展,基于Kinect的虚拟试衣系统为顾客在线选购衣物提供了一种新的选择方案.Kinect可以较为准确地测量出人体的骨骼模型,生成人体三维数据,以进一步为顾客推荐衣服型号,并利用可视化技术进行虚拟试装.然而,人的体型不同,不同厂家的制衣型号也不规范,传统的数据筛选与匹配手段为顾客选择的衣服尺码总是不尽人意.本项目基于Kinect获取的人体三维数据,设计了一种加权随机森林方法为顾客预测并推荐合适的衣服型号.结合其它机器学习模型,本文进行了对比实验,结果表明随机森林模型有效而准确,在3000个测试样本上得到了最高的准确率(100%).该模型泛化能力强,且足够健壮稳定,可以广泛地应用在虚拟试衣型号推荐情景中.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号