首页> 中文期刊> 《供用电》 >基于自适应关键点融合的人员穿戴属性度量分析方法研究

基于自适应关键点融合的人员穿戴属性度量分析方法研究

     

摘要

大多数人员穿戴属性研究使用图像整体特征构建多分类问题,存在空间信息耦合和对穿戴款式扩展支持不好的问题.提出了一种基于自适应关键点融合的人员穿戴属性度量分析方法.该方法由特征提取网络和特征向量度量学习结构两部分组成,特征提取网络包含3部分模块:基于HRNet网络的行人关键点热力特征图模块、自适应关键点与图像特征融合模块、带注意力机制的残差网络特征映射模块.基于该网络的自适应机制实现头部、上衣、下装3个属性识别分支的特征向量的映射.针对每个属性识别分支穿戴的不同状态或款型,利用基于arcface的度量学习方法,实现穿戴属性识别.结果表明,提出的方法在精细标注的穿戴款式数据集上识别精度为94.2%.在某实际场景工装数据集上,仅通过训练集入库,工装穿戴识别精度达到86.6%.研究可为人员穿戴状态和款型分析提供参考.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号