首页> 外文期刊>Computational Imaging, IEEE Transactions on >Unified Image Fusion Framework With Learning-Based Application-Adaptive Importance Measure
【24h】

Unified Image Fusion Framework With Learning-Based Application-Adaptive Importance Measure

机译:具有基于学习的应用程序自适应重要性度量的统一图像融合框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel unified image fusion framework based on an application-adaptive importance measure. In the proposed framework, an important area is selected using the importance measure obtained for each image type in each application. The key is to learn this application-adaptive importance measure that can select the important area irrespective of the input image type without manually designing the algorithm for each application. Then, the fused intensity is generated using Poisson image reconstruction. Experimental results demonstrate that the proposed framework is effective for various applications including depth-perceptible image enhancement, temperature-preserving image fusion, and haze removal.
机译:本文提出了一种基于应用自适应重要性度量的新型统一图像融合框架。在提出的框架中,使用针对每个应用程序中每种图像类型获得的重要性度量来选择重要区域。关键是要学习此应用程序自适应重要性度量,该度量可以选择重要区域,而与输入图像类型无关,而无需为每个应用程序手动设计算法。然后,使用泊松图像重建生成融合强度。实验结果表明,所提出的框架对于包括深度感知图像增强,温度保持图像融合和雾度去除在内的各种应用都是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号