首页> 中文期刊> 《计算机系统应用》 >基于GoogLeNet和ResNet的深度融合神经网络在脉搏波识别中的应用

基于GoogLeNet和ResNet的深度融合神经网络在脉搏波识别中的应用

     

摘要

为了提高脉搏波识别的准确率,提出改进的深度融合神经网络MIRNet2.首先,经过主波提取、划分周期和制作hdf5数据集等,获得Caffe可处理的数据集.其次,提出由Inception模块和残差模块构成的融合网络Inception-ResNet (IRNet),包含IRNet1、IRNet2和IRNet3.在此基础上,改进Inception模块、残差模块和池化模块,构造Modified Inception-ResNet (MIRNet),包含MIRNet1和MIRNet2.与本文其它神经网络相比, MIRNet2的分类性能最好,特异性、灵敏度和准确率分别达到87.85%、88.05%和87.84%,参数量和运算量也少于IRNet3.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号