首页> 中文期刊> 《计算机系统应用》 >基于改进CNN特征的场景识别

基于改进CNN特征的场景识别

     

摘要

随着人工智能的发展,场景识别作为计算机视觉研究的重要方向之一,吸引着越来越多研究者的关注.由于传统的手工特征无法充分描述场景图像的信息导致效果不理想,而卷积神经网络(CNN)提取的特征能够包含丰富的场景语义和结构信息,因此就常见的体系结构而言,本文选取AlexNet网络模型进行场景识别的研究,分别从网络模型的深度、宽度、多尺度化提取以及多层融合考虑进行改进,改进后在两个数据集上的识别率分别可达92.0%和94.5%,通过对比结果表明了本文方法的有效性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号