首页> 中文期刊> 《计算机仿真》 >基于CEEMDAN-SAFA-LSSVM的短期风功率预测

基于CEEMDAN-SAFA-LSSVM的短期风功率预测

     

摘要

随着电网中风电渗透率的逐年提高,对其出力进行精确预测是保障电网可靠运行的技术措施之一.建立了基于CEEMDAN-SAFA-LSSVM短期风功率组合预测模型.采用完全集合经验模态分解(CEEMDAN)将原始风功率序列分解成特征互异的各个本征模态分量,对分解产生的本征模态分量进行相空间重构,然后根据得到的新模态分量建立相应的最小二乘支持向量机(LSSVM)预测模型.针对LSSVM模型的预测精度易受参数选择的影响,提出萤火虫算法(SAFA)优化LSSVM模型的参数,解决了 LSSVM参数寻优效率低的问题.算例分析表明CEEMDAN-SAFA-LSSVM模型在风功率预测中具有较高的预测精度和预测效率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号