首页> 中文期刊> 《计算机仿真》 >基于遗传的CNN优化方法在入侵检测中的应用

基于遗传的CNN优化方法在入侵检测中的应用

     

摘要

卷积神经网络在入侵检测领域已得到较多运用,检测性能与卷积层、全连接层的初始权重、阈值、网络结构参数、优化器及全连接层神经元数等有着密切关系.利用遗传算法强大的全局寻优能力,通过遗传算法的选择、交叉和变异等操作获得最优初始权重、阈值、网络结构参数、优化器及全连接层神经元数等来优化卷积神经网络,并将优化后的卷积神经网络应用于入侵检测,通过对入侵数据进行识别,提出了一种基于优化卷积神经网络的入侵检测算法.实验结果表明,与支持向量机、不同结构卷积神经网络、BP神经网络等方法相比,所提的方法对入侵数据检测的准确率和检测率有明显提高,误报率有明显降低.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号