首页> 中文期刊> 《计算机仿真》 >基于模糊kohonen聚类网络的改进算法

基于模糊kohonen聚类网络的改进算法

     

摘要

模糊kohonen聚类神经网络将模糊隶属度概念应用于一般Kohonen聚类网络的学习和更新策略中,改善了Kohonen聚类网络的性能,是一种快速有效的聚类网络.但在死神经元的处理和收敛速度上还有改进的空间.为了能使网络更好应用于海量数据的聚类问题,对模糊Kohonen聚类网络算法在输出神经元的模糊偏置度、侧抑制模糊隶属度和加权系数提出了三方面改进.同时,对改进的模糊Kohonen聚类网络的有效性进行实例仿真,仿真结果体现了改进算法能有效避免死神经元的出现和提高了网络的聚类速度.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号