首页> 中文期刊> 《计算机仿真》 >基于自适应GA_Elman神经网络的短时交通预测

基于自适应GA_Elman神经网络的短时交通预测

     

摘要

为了提高短时交通流量的预测精度和针对Elman神经网络容易陷入局部最小值的缺点,采用了自适应GA_Elman神经网络模型.通过对比Elman神经网络不同隐含层数模型的预测误差,选用最佳层数;通过输入的样本数自动选取隐含层的节点数来实现隐含节点的自适应,通过遗传算法优化模型的权值和阈值,从而获得最佳的预测模型.通过实例分析,与Elman神经网络、GA_Elman模型进行对比,表明模型具有更好的预测效果.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号