首页> 中文期刊> 《计算机科学与应用》 >重金属污染的卡尔曼预测及可视化系统研究

重金属污染的卡尔曼预测及可视化系统研究

     

摘要

传统的重金属污染预测是基于数学统计进行回归分析预测,由于现代人类生产活动、非自然地质演变等要素所带来的噪声影响,传统的数学统计方法预测效果欠佳,为了解决这一问题,针对基于卡尔曼滤波算法的重金属污染预测模型进行了研究,并采用皮尔逊相关系数检验和Wilcoxon符号秩检验来验证该预测模型的准确性,实验结果表明通过卡尔曼滤波算法建立的重金属污染预测模型具有良好的稳定性和准确性。此外,重点就重金属污染防治可视化进行了研究探讨,并基于Django架构设计的城市规划平台成功将区域重金属污染状况在地图上进行数据渲染和动态监测,对重金属污染起到一定的预防作用。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号