首页> 中文期刊> 《计算机科学与应用》 >应用于电力设备图像的数学形态学边缘检测

应用于电力设备图像的数学形态学边缘检测

     

摘要

目的:近年来,电厂以及电网的新型化与网络化逐步展开,远程监测系统在电力行业中广泛应用,数字图像处理在其中扮演着重要的角色,边缘信息的提取对于图像后期处理的效果尤其关键。因此,提高图像检测的精准程度,对于全面推行和深化电力设备的维护与检修意义重大:一方面可以提升企业生产运输的效率;另一方面维护了厂区与工作人员的安全。方法:本文通过分析电力设备图像的特点,充分发挥数学形态学的优势,提出了一种自适应权重的多尺度多方向新型算子。并且引入权重的概念,使边缘检测模式与对应图像之间达到最佳配准,进而提取到更全面更精细的图像边缘。结果:大量数值实验表明,该算法可以更好地提取到边缘细节,其边缘检测评价指标(品质因数F)提升到了0.9以上的超高数值,表明提取到的图像边缘非常完整,而且对噪声的抑制与消除也有明显的改善。结论:本文所提出的多尺度多方向的数学形态学边缘检测新思想,在图像的边缘检测方面具有明显的优势,为电力公司的图像监测提供了有益思路和算法支撑,具有很好的应用价值。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号