首页> 中文期刊> 《计算机科学与应用》 >基于差分进化算法与循环神经网络的MBR膜通量预测

基于差分进化算法与循环神经网络的MBR膜通量预测

     

摘要

膜生物反应器(Membrane Bio-Reactor, MBR)处理污水是一个复杂的动态过程,难以用数学模型直接建模。针对该问题,本文利用差分进化算法(Differential Evolution Algorithm, DE)优化的循环神经网络(Recurrent Neural Network, RNN)对污水处理过程的膜通量进行预测。首先运用主成分分析法确定影响膜通量的相关过程变量;然后用DE算法优化RNN的初始权值和阈值;最后用训练好的DE-RNN模型进行预测并与样本数据对比。结果显示,该模型对膜通量地预测有着较高的准确率,具有很好的自适应性,达到了预期目标。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号