首页> 中文期刊> 《计算机与现代化》 >改进的Fast-CNN模型在绝缘子特征检测中的研究

改进的Fast-CNN模型在绝缘子特征检测中的研究

     

摘要

针对目前电网巡检系统中采用红外成像检测绝缘子串特征的效果受环境影响,提出联合显著区域和Fast-CNN网络(改进后的卷积神经网络)用于绝缘子特征检测研究.显著区域检测首先采用超像素描述各区域位置的整体信息;然后基于各超像素的特征协方差信息计算各超像素的显著度得到大致显著区域;再通过区域模块化和局部复杂度对比提取显著特征,同时将2种方法提取的显著特征分别输入改进后的Fast-CNN网络进行显著区域检测,同时引入动态自适应池化模型和余弦窗处理中间层,最后通过多次迭代训练得到绝缘子特征,避免CNN模型耗时的全图搜索.将本文算法在红外图像库中进行测试,本文算法的F-Measure以及平均误差MAE均优于当前流行算法.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号