首页> 外文学位 >Photoemission studies of a new topological insulator class: Experimental discovery of the bismuth-X3 topological insulator class.
【24h】

Photoemission studies of a new topological insulator class: Experimental discovery of the bismuth-X3 topological insulator class.

机译:新型拓扑绝缘子类别的光发射研究:铋-X3拓扑绝缘子类别的实验发现。

获取原文
获取原文并翻译 | 示例

摘要

Topological insulators are materials with a bulk band gap, which carry conducting surface states that are protected against disorder. In three dimensions, the insulators carry 2D Dirac fermions on their surfaces. The opening of a magnetic surface gap can exhibit a topological magnetoelectric effect, and support Majorana fermions which can be manipulated for quantum computation. Previous spin and angle-resolved photoemission studies have shown that Bi 1-xSbx alloy belongs to this class of materials, with a characteristic number nu 0 = 1. Some materials challenges with Bi1-x Sbx alloy however are the significant degree of bulk disorder and a small band gap. Both problems make gating difficult for the manipulation and control of the charge carriers.;While ordinary materials such as superconductors and liquid crystals can be described by an order parameter, topological insulators are not associated with a local order parameter resulting from a spontaneous broken symmetry. Rather, they manifest a topological order which requires a direct probe of how their energy bands are connected. Measurement techniques designed to detect a particular order parameter are therefore insufficient to identify the topological character of a material. Alternatively, one can look for properties analogous to the quantum Hall effect as a signature of a topologically ordered system. However, using transport probes to isolate the surface states of the topological insulator requires a pristine bulk with minimal charge carrier density. While advances have been made recently in this direction, a good candidate for such measurements has been elusive.;In this thesis, we describe a systematic study of a new topological insulator class with a large band gap and a single surface state Fermi surface. Using synchrochon-based angle-resolved photoemission spectroscopy (ARPES), we measured the topological character of these materials by observing the dispersion of their metallic electronic states confined to the surface. Additionally, we confirmed the unusual spin texture of these surface states using spin-sensitive ARPES. In Chapter 1, we first give a brief summary of the theoretical developments leading to the proposal of the topological insulator. In Chapter 2, a description of the experimental techniques of spin and angle-resolved PES is provided. Chapter 3 presents experimental data for three members of the topological class: Bi2Se3, Bi2Te3 and Sb2Te3. In each of the discussions, a comparison with the respective theoretical surface state calculations is presented. Finally, in Chapter 4, we present several techniques for manipulating the metallic surface states of the topological insulators.
机译:拓扑绝缘体是具有大禁带宽度的材料,其携带的导电表面状态受到保护,可防止混乱。在三个维度上,绝缘子的表面都带有二维Dirac费米子。磁性表面间隙的开口可表现出拓扑磁电效应,并支持可被操纵用于量子计算的马里亚纳费米子。先前的自旋和角度分辨光发射研究表明,Bi 1-xSbx合金属于此类材料,特征数nu 0 =1。然而,Bi1-x Sbx合金的一些材料挑战在于显着的体积无序度和小带隙。这两个问题都使门控难以控制和控制电荷载流子。虽然可以用阶数参数描述超导体和液晶等普通材料,但拓扑绝缘子与由于自发对称性破坏而产生的局部阶数参数无关。而是,它们表现出拓扑顺序,这需要直接探究其能带如何连接。因此,旨在检测特定阶数参数的测量技术不足以识别材料的拓扑特征。另外,人们可以寻找类似于量子霍尔效应的性质,作为拓扑有序系统的标志。但是,使用传输探针来隔离拓扑绝缘子的表面状态需要具有最小的载流子密度的原始块。虽然最近在此方向上取得了进展,但对于此类测量的一个好的候选者却难以捉摸。;在本文中,我们描述了对具有大带隙和单表面状态费米表面的新型拓扑绝缘子类别的系统研究。使用基于同步的角度分辨光发射光谱(ARPES),我们通过观察它们局限于表面的金属电子态的分散性来测量这些材料的拓扑特征。此外,我们使用自旋敏感ARPES确认了这些表面状态的异常自旋纹理。在第一章中,我们首先简要概述了提出拓扑绝缘子的理论发展。在第二章中,将介绍自旋和角度分辨PES的实验技术。第3章介绍了拓扑类别的三个成员的实验数据:Bi2Se3,Bi2Te3和Sb2Te3。在每个讨论中,均与各自的理论表面状态计算进行了比较。最后,在第4章中,我们介绍了几种用于处理拓扑绝缘子的金属表面状态的技术。

著录项

  • 作者

    Xia, YuQi.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号