首页> 中文期刊> 《计算机测量与控制》 >基于深度学习的小样本声目标识别方法

基于深度学习的小样本声目标识别方法

     

摘要

声目标分类识别是声源识别领域的核心问题,然而,在应用深层神经网络进行声目标分类识别时,从少量样本中学习(样本复杂度较低)是一个具有挑战性的问题;针对此问题,提出了一种基于深度学习的小样本声目标识别方法,该方法将手工设计特征和对数梅尔声谱特征结合到一起,扩充了深度学习模型的可利用特征量,提高了声信号识别效率和精度;在实验验证中,该方法在测试集上实现了 87.6%的识别精度;更进一步地,用较少量的训练样本对该方法和其它几种主流的深度学习模型的性能进行了比较验证,结果表明,该方法只需要更少量的数据即可实现同样的识别精度,在声源探测领域具有一定应用价值.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号