首页> 中文期刊> 《计算机工程》 >一个轻量级分布式机器学习系统的设计与实现

一个轻量级分布式机器学习系统的设计与实现

     

摘要

为满足大规模机器学习系统高定制化、低耦合与低资源消耗的需求,设计并实现一个轻量级分布式机器学习系统。采用模块化分层设计并移植多种主流的机器学习与深度学习算法,同时提出参数服务器与动态Ring-AllReduce 2种可扩展梯度同步方案,对算法模型进行并行训练加速。实验结果表明,该系统对于稀疏与稠密模型均有较好的扩展性与稳定性,参数服务器训练可达到与单机相近的准确率与收敛效果,Ring-AllReduce也能在8节点模型上实现相对单节点模型6倍的训练加速。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号