首页> 中文期刊> 《计算机工程与科学》 >围网渔情预报中强影响因子的挖掘技术研究

围网渔情预报中强影响因子的挖掘技术研究

     

摘要

针对传统围网渔业渔情预测方法的缺点,综合多种类型海洋环境因子,采用粗糙集理论中的属性约简方法,获得多种类型因子中的约简属性,即影响围网产量的强影响因子.该技术首先对渔情监测数据进行缺失值的填补,再利用可辨识矩阵进行属性约简,从而构建出强影响因子的核心属性集.该算法有效解决了渔情监测数据的稀疏性问题,提高了渔情预测的准确性.%Firstly,a new algorithm based on attribute frequency in the discernibility matrix is used to get the core-attribute of attribute reduction.Secondly,considering the effect of different kinds of marine environment factors,an effective prediction model is established to confirm the core-attribute to be the high effect factors of purse seine outputs.This method addresses the issue by automatically filling vacant item of the fishery monitor data set,and then to take a attribute deduction using the discernibility matrix to get the core-attribute to be the high effect factors of purse seine.The experiment results show that the algorithm efficiently improves sparsity of date set,and promises to make prediction more accurately.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号