首页> 中文期刊> 《计算机工程与应用》 >V-SLAM深度学习闭环检测研究进展与展望

V-SLAM深度学习闭环检测研究进展与展望

     

摘要

闭环检测是同步定位与建图(simultaneous localization and mapping,SLAM)中的一个重要组成部分,用于减少移动机器人在位置估计和构建环境地图时产生的累计误差。传统方法采用人工设计的特征,但在外界环境中容易受到光照、天气和视点变化等因素所带来的影响。随着深度学习技术的发展,闭环检测得到广泛的探索,且在复杂环境中基于深度学习的闭环检测具有较强的鲁棒性。通过梳理闭环检测的背景和发展现状,从基于深度卷积神经网络、自动编码器和语义信息三个方面,对目前视觉SLAM(visual-SLAM,V-SLAM)闭环检测方法的基本原理、算法特点进行了对比分析,并从视觉应用层面上总结了三类方法所适用的场景,最后讨论了闭环检测未来在自然环境变化、多移动目标和实时动态三个方面所存在的挑战和研究展望。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号